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ROBOTICS/ APPLICATION ~ 

PUMPING IRON 

Having considered the various methods that 
are used to control robot movement, we now 
turn our attention to an equally important 
aspect of robot design — the control and 
movement of the robot’s ‘arm’ and ‘hand’. 

A robot’s effectiveness depends to a large degree 
on the precision with which it can manipulate 
objects. Many robots are used primarily for “pick 
up and place’ operations — moving components 
in a factory from one conveyor belt to another, for 
example. Thus, the design of the robot arm is of 
paramount importance. 

In general, there are three requirements that 
must be considered. A system must be developed 
to describe the position of the arm at any time; the 
arm must have a ‘skeleton’; and there must be a 
‘muscle’ system that will actuate the arm and 
enable it to be controlled. The different ways in 
which these vital elements interact tend to dictate 
the overall appearance of robot arms. However, 
different types of arm may be roughly classified by 
considering the spatial methods used to describe 
the arm’s exact position at any given time. 

In our discussion of robot movement (see page 
621), we described the Cartesian co-ordinate 
system. Using this method, the position of the 
robot on the floor was specified by means of two 
axes — x and y — at right angles to each other. 
The same principle can be applied to a robot arm, 

but, because an arm may move freely in three 
dimensions, we need to add another variable — z 
— to describe the arm’s vertical position. Using 
these x, y and z co-ordinates, we can describe the 
position of the arm anywhere in space (‘space’ 
simply being the mathematical way of describing 
any open area). 

It is possible to construct a robot arm that moves 
exactly along these three co-ordinates: the result 
will be something that looks a little like an 
overhead gantry crane that can move up/down, 
side-to-side, and forwards/backwards (or all 
three directions in combination). Arms like this 
are well suited to jobs in which work is done over 
some fixed area. For instance, the robot might 
have a workbench at which all its tasks are carried 
out, and, in this case, a Cartesian arm will be more 
than adequate. But this method does have its 
disadvantages. For example, such arms require a 
substantial frame, which makes them inflexible in 
applications away from the workbench. 

Another method of describing the position of 
an arm uses cylindrical co-ordinates. To 
understand how these work, think of an empty tin 
can; you will realise that any position inside the 
can may be described by specifying its distance 
from the centre of the can (using a distance 
variable, r); how far around the can it is from some 
fixed point (using an angular variable, 0 ); 
and how far up the side of the can it is (using 

IAN McKINNELL 

Double Jointed 
For the next decade, the 
archetypal robot will be the 
simple arm equipped with a 
variety of ‘hands’ for industrial, 
household and hobbyist use. 
Very few applications really 
require the self-propelled 
autonomous thinking machine | 
of sci-fi myth, but a 
programmable semi-intelligent 
gripper is as significant a device 
as the plough or the telescope 
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Robotic Rotations 
The simplest arm, consisting of 
a gripper and a two-axis elbow 
joint, is capable of precise 
positioning in a very large 
volume ofspace as these 

- illustrations show. 
The elbow is hinged, 

permitting semi-circular vertical 
movement, and pivoted, which 
allows horizontal circular 
movement. The arm moves to 
any point on the access 
hemisphere by rotations at the 
pivot and hinge. These can be 
derived by trigonometry from 
the Cartesian (x,y and z) co- 
ordinates of the point as shown: 
H, the pivot rotation, is equal to 
ARCTAN(x/y), while V, the hinge 
rotation, is ARCSIN(z/R). The 
arm is programmed with the 
Cartesian locations of objects; it 
transforms each set of co- 
ordinates into two rotations 
which it sends to its two 
servomotors, thus effecting 
movement ; 

VERTICAL ROTATION 

another distance variable, z). So by using 
cylindrical co-ordinates it would be very easy to 
develop a system that could pick out any object 
from a specified position inside the can. 

Arms that use spherical co-ordinates take this 
process one step further by specifying a position in 
terms of two angles and one distance. In this case, 
‘distance’ is the length of the arm, and the two 
angles are the amount by which the base rotates 
and the angle of elevation of the arm. Arms suchas 
these are very much like a gun turret, in which the 
length of the gun barrel may be varied. Spherical 
co-ordinates are usually described as r, 8, and ©. 
For the robot engineer, it is simple enough to 
design an arm that can move in and out 
telescopically, possibly driven by hydraulic power. 

The final, and most common, method of 
describing the position of an arm is by using 
revolute co-ordinates. This is a system that is 
specifically designed to control robot arms by 
imitating the actions of the human arm. As before, 
three variables are needed to specify the arm’s . 
position; this time they are all angles and could be 
described as 8, © and y co-ordinates. 6 (theta) 
refers to the angle through which the base is 
rotated; © (phi) refers to the angle of elevation of 
the arm; and y (gamma) describes the angle of 
a second arm joint. 

BUILDING UP MUSCLE 
The chosen co-ordinate system will dictate the 
type of ‘skeleton’ a robot arm requires. All that is 
needed now is some ‘muscle’ to power the arm’s 
movement. In general, there are three types of 
robot muscle used — electrical, hydraulic and 
pneumatic. Let’s look at these in turn. 

We have already discussed electrical power in 
connection with robot movement. The same 
electrical stepper motors may be used to power 
robot arms. For example, they can do so directly, 
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ACCESS HEMISPHERE 

by having a powerful motor at each arm joint and 
letting this rotate by a small amount for each joint 
movement, or indirectly, by means of gears, 
pulleys or levers. 

However, a better system would involve 
making the robot ‘muscles’ work in much the same 
way as our own — by expanding and contracting 
so as to act on the skeleton of the arm directly. This 
is done by arranging a series of pistons to act on 
each arm joint. These pistons may be hydraulic 
(using fluid) or pneumatic (using air). For use with 
massive industrial robots, hydraulic power is 
preferred as this can provide much higher pressure 
(giving more force to the arm) and because fluid 
does not compress or expand to the same extent as 
air does. 

This means that when a piston is moved along a 
cylinder by hydraulic pressure it does not 
‘bounce’, but stops at precisely the desired point. 
Air, by contrast, does not allow such precise 
positioning. No matter which system is used, 
single or double action pistons may be utilised to 
produce motion in the arm. This type of motive 
power is called a linear actuator. 
A further refinement is possible. Instead of 

using pistons that move backwards and forwards 
and then translating this movement into a rotation 
at the joint, a rotary actuator may be used. This 
produces direct rotation in the joints by means of 
pressure on a vane inside a circular housing. This is 
a similar process to the use of an electrical stepper 
motor, but the hydraulic pressure means that far 
more power may be exerted. Pneumatic pressure 
is unsuitable for this type of application. 

Once the mechanics of the robot arm have been 
decided upon, all that is needed is a ‘hand’ (or end 
effector) so that, once the arm is correctly 
positioned, it can actually do something. Here, it is 
instructive to think about the way a human hand 
works. Consider the human wrist — if this was 
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encased in plaster so that it could not be moved, 
most tasks would be much more difficult. When 
operating a keyboard, for example, the wrists 
allow your hands to move up and down as you 
strike the keys — this is known as ‘pitch’, and 
without it, you would have to move the whole 
forearm up and down when typing. 

Your wrists also move from side to side as you 
press the different keys — this is ‘yaw’, and the 
absence of this would entail elbow movement. 
Once you have finished typing, you can turn your 
wrists so that your hands rest, thumbs upwards, at 
the side of the keyboard. This is known as ‘roll’ and 
would require a complicated set of shoulder 
movements if wrist movement was not available. | 

Ideally, then, these three different movements 
should all be built into the robot wrist. Each of the 
movements — pitch, yaw and roll — can act in 
two directions (up/down, left/right, clockwise/ 
anticlockwise) and each of these is called a ‘degree 
of freedom’. So a robot that incorporates pitch, 
yaw and roll can be said to have six degrees of 
freedom. Robots are built with lesser degrees of 
freedom — perhaps four or five — but for each 
reduction in wrist movement there is a 
corresponding increase in the movements that 
must be made by other, larger parts of the arm. 

THE ROBOT HAND 
We must now consider the design of the hand 
itself. The ideal configuration would be a human- 
like hand at the end of a human-like arm, and 
some robot hands do approach this definition. The 
most common form of robot hand is a three- 
fingered gripper — consisting of two fingers plus 
an opposing ‘thumb’ — which enables the robot to 
grasp objects in much the same way as a human 
hand would. 

The power used to drive the hand can be any of 
the three types already mentioned, and will 
depend on the task the robot is to perform. If the 
hand must move large objects weighing several 
hundred pounds, hydraulics will probably be 
necessary. But for many applications, simple 
electrical or pneumatic power will suffice because 
the hand will need only to grip an object and 
release it when desired — if the arm and wrist have 
positioned the hand correctly, this will not require 
any great accuracy; a simple opening and closing 
movement will be enough. 

In many cases, though, the robot arm will not be 
fitted with a hand. We have already used the 
phrase ‘end effector’ to describe a hand, but this 
can just as easily refer to many other things. A 
robot that is used for welding does not require a 
hand at all—a welding gun may be fastened 
directly to the wrist. In fact, some robots are 
capable of choosing the correct end effector for the 
task they are carrying out; they can discard one 
end effector (a screwdriver, say) and insert 
another (a spray gun, for example) into a standard 
socket at the wrist. This may not be a particularly 
human-like action, but it serves to make robots 
extremely adaptable. 

Robot Wrist 
If the simple two-axis arm 
illustrated is equipped witha . 
flexible wrist, then its access 
space is greatly increased in 
volume; the complexity of the 
-c0-ordinate transformations 

increases with the wrist 
articulation, but the 
mathematics are trivial 
compared with the engineering 
problems of lightness, strength, 
accuracy and flexibility. The real 
software problem is in 
‘deciding’ which of the many 
possible gripper orientations 
best suits the object to be 
gripped 

Pitch And Yaw 
The human wrist’s capability for 
pitch and yaw (up-down and 
left-right movement) is limited 
by precisely those constraints 
that affect robot designers; i.e. 
the problem of reconciling 
strong, compact joints with the 
need for flexibility and lightness. 
These joints do not add much to 
the access space, but they do 
greatly increase the arm’s ability 
to manipulate real objects 

Roll And Extension 
These are simpler joints to 
construct, and contribute far 
more to the arm's access space 
than do the pitch and yaw joints. 
Arms equipped with only roll 
and extension capabilities are 
adequate for the majority of 
industrial applications 
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Searching Hi And Lo 
On the BBC Micro and the 

‘Spectrum a program line 
_ begins with three or four bytes 

dedicated to the line number 
and the length of the line. This 
is followed by the tokenised 
BASIC text. When the program 
encounters the line it records 
the line number and calculates 
the start address of the next 
line from the length of the 
current line. It then ‘slides’ the 
search template along the 

program text until it meets 
end-of-line, end-of-program, 
a REM token or a successful 
match 

ROLL CALL | 

m 

computers and provide editing facilities or 
other programming aids are known as 
‘utilities’. We begin a series of articles that 
explore a range of utility programs for the 
more popular home computers and develop 

tilities 

varies considerably: some computers have only 
a simple editor, as in the Sinclair Spectrum, while 
other machines feature more extensive facilities. 
The BBC Micro, for example, includes the TRACE 
and RENUMber commands: the former causes the 
line number of each BAsic statement to be 
displayed as the line is being executed, and the 
latter automatically renumbers the lines of a BASIC 
program. Both of these facilities are immensely 
useful in program development and debugging. 
But whatever is provided with your machine, it is 
invariably helpful to have additional utilities, and 
there is a wide range of commercially available 
programs to choose from. 

Utility programs are | generally written in 
Assembly language, partly because of the speed of’ 
machine code and partly because it is not easy for a 
BASIC program to alter itself without crashing the 
computer. However, we will begin by looking at 
some simple utilities that can be writen in Basic. In 
this way, we can concentrate our attention on what 
a utility program has to do, without having to 
consider other complicating details, such as the 
role of the computer’s operating system and the 
BASIC interpreter. 

Although it is difficult for a BAsiIc program to 
alter itself, there is no problem in creating a BASIC 
program that inspects another BASIC program. The 
utility program we give here, in versions for the 
Spectrum and the BBC Micro, searches through a 
BASIC program for the name of a variable or 
function, and prints the line numbers where the 
name is found. 

Both programs begin by finding where the 
program text starts in the computer’s memory. 
Then they go through the program line by line, 
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skipping over those sections that cannot include a 
name and extracting all the names. The final step 
involves comparing each extracted name with the 
name the program was asked to find. 
When the program starts its search of a new line 

of BASIC text, it first notes the line number, which in 
both cases is stored in two bytes, and the line’s 
length (the number of bytes it occupies). In the 
BBC Micro, the line length is contained in one 
byte, and is the total number of bytes in the line 
from the line number to the end-of-line marker 
(ASCII code 13), In the Spectrum, the line length 
is stored in two bytes, and represents the number 
of bytes from the character following the length 
bytes to the end-of-line marker (thus not including 
the line number and line length bytes in its total). 
In both versions of the program, we ignore all 
the REM statements and anything that is enclosed 
in quotes, as we will not normally have any 
program variables in these character strings. The 
BBC Micro allows you to include hexadecimal 
numbers in a program, prefixed by the character &. 
We need to make sure that our program does not 
mistake these hexadecimal numbers for variable 
names, and therefore we need to make the 
program skip over any strings preceded by an &. 
For example, we do not want our program to 
mistake the hex number A0 in &A0 as the variable 
name ‘AQ’. 

In the Spectrum, numbers are stored in a 
program as the ASCII characters for the digits of — 
the number, followed by the ASCII code byte 14, 
and then five bytes containing the binary 
equivalent of the number. Our program needs to 
be able to skip over the number code and the five 
byte binary equivalent. 

Having tested for these conditions, the program 
proceeds to inspect the current line for any names. 
In both programs, a name is defined as beginning 
with a letter, followed by another letter or a digit. 
The BBC Micro version allows integer variables 
(distinguished by a % character after the name) 
and the underscore character, and both versions 
allow string variables, which are followed by a $ 
character. 

The name of an array, a function or (in the BBC 
Micro) a procedure will be followed by an open 
bracket — (. Strictly speaking, this is not part of 
the name, but is used by the programs to 
distinguish these from simple variables. 

There are further complications in the 
Spectrum program. In particular, Spectrum Basic 
does not distinguish between upper- and lower- 

_ case for characters in a variable name. Thus, FRED, 
Fred or FRed are all treated as the same variable 
name. The Spectrum program, therefore, converts 



all letters to upper-case before it starts its 
matching. The Spectrum will also allow spaces to 
be included in variable names, but these can lead 
to problems and we advise against their use. 

Spectrum BAsic does not make the strict 
distinction found in most other BASIC omens 
between string variables and string arrays — 
fact, a Spectrum string variable is more ae a 
character array. Since we can have, for example, 
TS and TS(i), referring to a string and part of the 
same string, the program does not attempt to 
distinguish between simple string variables and 
string arrays. This is not a real limitation, however, 

Spectrum BASIc does not allow you to have a 
string variable and array with the same name. 

To use our utility program, first type it in and 
save it, and then merge it with the program you 
want searched, using the MERGE command on the 
Spectrum or the method described in Chapter 377 
of the User Guide for the BBC Micro. Invoke the 
search routine with RUN 9000 (Spectrum) or GOTO 
30000 (BBC Micro), and type in the name you 
want to find when asked for it. If you want an array 
name, add an open bracket at the end of the name. 

Finally, as an exercise, you may like to use the 
principles described here to write a program that 
tells you which lines in a program contain a call toa 
specified subroutine. In the next instalment of this 
course we will supply a full listing of this program 
for the Commodore 64. 

©0000000 
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BUGS IN THE WORKS — 

Having covered turtle geometry in some 
detail, the course moves on to look at LOGo’s 
use of sprites. We start with a discussion of 
the basic principles behind turtle sprites, 
drawing our examples from Commodore 

Using LoGo, sprites act in a similar way to turtles, 

obeying all the commands that a turtle obeys. 
‘Unlike turtles, however, we can define the shape 
of a sprite ourselves — although these shapes do 
not rotate on the screen as the sprite’s heading 
changes, in the way that a turtle does. 

In Commodore Loco, the turtle is counted as 
sprite number 0, and there are seven other sprites 
— numbered 1 to 7. To begin with, sprite 0 is the 
‘current’ sprite, and obeys all the sprite commands 
entered. To make sprite 1 the current sprite, you 
simply type in TELL 1. From then on, all sprite 
-commands will be obeyed by sprite 1 until a 
different current sprite is specified. . 

After typing TELL 1, however, you won't see 
anything on the screen. This is because all the 

sprites, other than the turtle, begin as ‘hidden’ 
objects and have their pens up. In order to see 
sprite 1, and see where it moves, you have to type 
ST, and a vague square will appear on the screen. 
Experiment with this sprite grid, using the turtle 
commands FD, BK, RT, LT, PD, PU, ST, HT, and so on. 

If you move sprite 1 to the same position as 
sprite 0 (the turtle) you will notice that it appears 
to be behind the turtle. In general, lower 
numbered sprites are shown ‘in front of’ higher 
numbered sprites. This is useful for three- 
dimensional effects. 

There is a sprite editor on the Commodore | 
LOGO utilities disk. Read this in by typing READ 
“SPRED. To edit the shape of sprite 1, first make it 
the current sprite with TELL 1 and then type EDSH. 
The display will show a much enlarged view of the 
sprite grid and we can now move the cursor 
around the screen. Pressing the asterisk key (*) will 
fill in a pixel, while pressing the space bar will 
blank it out. | 

Having designed your sprite, press Control-C 
to define the shape. If the sprite is not visible, try 
entering ST. This same shape can now be given to 
other sprites as well. SETSHAPE 1 will give the 
current sprite the same definition as sprite 1. 
Having defined a set of shapes, you can save the 
sprites to a file with SAVESHAPES “FILENAME, and 
read them back with READSHAPES “FILENAME. 

There is a well-known mathematical problem in © 
which four bugs are placed at the corners of a 
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square. They are all set off at the same speed and 
each follows the bug to its right. The objective is to 
trace their paths. We give a Loco program here 
that implements the problem using sprites. 

The procedures that we give simply position a 
copy of the same sprite at each corner of the 
square, and then set them off following each other. 
The bug shape is defined as sprite 3, and the others 
are all given the same shape using SETSHAPE 3 in 
the position procedure. 

The heart of our solution lies in the FOLLOW 
procedure. In this, X and Y are first set to the x and y 
co-ordinates of the sprite that is being followed 
(:B), and then the sprite that is doing the following 
( :A) has its heading set towards this point. To do 
this, we use the primitive TOWARDS. This takes two 
inputs, which represent the co-ordinates of the 
point to be headed towards, and outputs the 
heading from the current sprite to that point. 

ANIMATION 
One interesting use of sprite graphics is in the 
creation of animation effects. A series of sprite 
shapes representing the same object is defined. 
Each of these is slightly different from the one 
before, and when they are run together they give 
the effect of motion. Commodore Loco gives three 
shapes that are a crude attempt at a man running. 
The following procedures set up the screen, and 
then set the three shapes in motion. 

TO RUNN 
TEELO 
DRAW 
PU. 
BIGX BIGY 
SETH 90 
RUNNING 2 

END 

TO RUNNING :SHAPE 
FD5 
SETSHAPE :SHAPE 
IF SHAPE = 4 THEN MAKE “SHAPE 1 
RUNNING :SHAPE + 1 

END 
Before running these procedures, read in the file 
SPRITES from the utilities disk. This contains a 
number of useful procedures including BIGX and 
BIGY, which double the size of a sprite. SMALLX and 
SMALLY are the reverse procedures: these are used 
to return a sprite to its original size. Read in the 
three sprites by typing READSHAPES “RUNNER, and 
then run the procedures. | 
We also define four sprite shapes on the 

following page, which we will use in a game in the 
next instalment. 



LOGO/COMPUTER SCIENCE — 

Logo Flavours 
Neither Spectrum LOGO nor the Apple LOGOs 
features sprite graphics. 
Atari users should note the following differences: 
1) There are only four sprites available. 
2) For SETSHAPE use SETSH. 
3) The sprite editor is included among the 
primitives. Pressing the Space bar fills an empty 
pixel, or blanks a filled one. 

Dragon Rampant 
In the next instalment we will 
publish the knight and dragon 
game, which uses Commodore 
LOGO’s sprite facilities to 
explore the pursuit algorithm in 
the bug demonstration. The 
sprites shown here are 
suggested shapes for use in the 

j LIZ DIXON 
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Three Bugs Exercise 
Write a LOGO program for another bugs problem, 
this time with three bugs at the corners of a triangle 
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MSX MACHINES/HARDWARE , 

EASTERN PROMISE 

Over a dozen Japanese companies, many of 
them household names in other areas of 
consumer electronics, have agreed on the 
MSX blueprint for a standard home 
computer. We take a look at the first MSX 
micros to reach the UK — the Sony Hit-Bit 
and Toshiba HX-10. 

The MSX standard (see page 141) dictates the 
CPU that is used (Z80); the minimum amount of 
ROM (32 Kbytes) and RAM (eight Kbytes); the 
type of graphics and sound chip; keyboard 
contents (though layout can vary); the minimum 
number of interfaces and their design; graphic and 
text screens and, of course, the BAsic language that 
is contained in ROM. Because MSX is a standard 
design, it is to be expected that MSX machines will 
all be similar. Manufacturers have flexibility in the 
amount of memory beyond the minimum, the 
type of keyboard used, and the number of extra 
interfaces. In practice, Sony and Toshiba, like 
most MSX manufacturers, have gone for a higher 
specification than the minimum requirement. 

The Sony Hit-Bit and the Toshiba HX-10 both 
have good quality keyboards, although some 
people might find the keys too sensitive. Both 
micros come with 64 Kbytes of main memory, and 
16 Kbytes of additional RAM dedicated to the 
video display. This gives a total of 80 Kbytes — 
more than is provided on most home computers. 
The Sony and Toshiba models each have a 
standard Centronics printer interface and a pair of 
joystick sockets — items that are often optional 
extras on home computers. 7 

Originally, it was expected that the MSX 
computers would be cut-price machines, but 
currency fluctuations and increased manu- 
facturing costs have pushed prices up. The Sony, 
for example, sells for around £300, and the 
Toshiba is priced at about £280. Another reason 
for the price increase has been the rush to get the 
machines onto shelves in Europe. Toshiba is 
sending all its machines out via costly air-freight, 
rather than by ship. The company has had to 
switch all its production lines from building 
Japanese versions of the machine to constructing 
the UK model, in the hope of being the first MSX 
manufacturer to have a product on sale in the UK. 

One of the first things you notice when you 
power up an MSX micro is a row of words across 
the bottom of the screen. These are keywords from 
the BAsic language, such as RUN, CLOAD“, LIST, etc. 
The micros have five function keys that produce 
these commonly used words. The words on the 
screen serve as labels for the function keys so that 

the user does not have to remember the function 
of each key. 

These keys are automatically defined when the 
machines are turned on, but it is easy to change 
their definitions by using the KEY command. 
Although there are five keys only, up to 10 
functions can be accessed by pressing the Shift key 
and the desired function key at the same time. As 
Shift is pressed, the labels on the screen change to 

Standard System 
The Toshiba HX-10 has two 

joystick ports, a Centronics 

parallel printer interface, ROM 
cartridge port, and cursor 
cluster, as shown here. MSX 
BASIC deals with joystick 
control in the same way as 
control via the cursor, so games 
can be written for one type of 
control, and automatically make 
use of the other as well 
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reflect the new functions assigned to the keys. 
Each function label can contain up to 15 
characters, although only the first seven of these 
will appear on the screen. 

The keyboard and screen editor work together 
to make editing easy. Four keys move the cursor 
around the screen, and changes can be made 
anywhere on the screen by simply over-writing the . 
existing characters. Inserting and deleting 
characters requires single keypresses. ‘The cursor 
keys on the Toshiba HX-10 are the same size as 
other keys on the keyboard, but the Sony Hit-Bit 
uses large distinctive keys for its cursor cluster. 
These keys are used often, so such a design can be 
very handy. | 

As with the hardware, the MSX software is 
filled with extra features. MSX Basic includes such 
commands as AUTO and RENUMber, and contains 
several commands to handle sound, graphics and 
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‘interrupt handling’. There are three primary 
commands to create graphics. LINE draws a line 
between two points, although it can also be used to 
draw a square by adding the letter B (for “box’) 
after the co-ordinates. Adding the letters BF (for 
‘box fill’) draws a square of solid colour. The 
CIRCLE command can be used to draw ellipses and 
arcs aS well as basic circles. And the PAINT 
command will fill any outlined shape with solid 
colour, managing to cope with even the most 
awkward shapes. 
Many other useful features are included in 

MSX sasic, although the most impressive set of 
commands — for ‘interrupt handling’ — may not 
be appreciated at first. Interrupt handling is very 
useful in high-speed graphics programming. 
There are a number of situations in which a 
program must perform one task, while constantly 
checking to see if something else happens. A 



MSX Standard 
CPU Z80A, 3.58 MHz 

Minimum 8K 

32K including BASIC 

16 colours, 256x192 graphics, 32 
sprites, 40x24 text display (or 32x24) 

(T| 9978 video chip or equivalent) 

SOUND 3-channel, accessible from BASIC 
(AY38910 sound controller chip) 

INTERFACES (SX cartridge port, modulated TV 
output, Centronics parallel printer, 
cassette interlace 

KEYBOARD QWERTY keyboard plus special 
function keys, 4 cursor keys, 10 
programmable function keys 

typical example of this can be found in Space 
Invader type games. The program must keep the 
aliens moving around the screen, all the while 
checking whether the ‘fire button has been 
pressed. The program needs to do two things at 
once, by switching rapidly between tasks. 

The MSX solution is to designate certain things 
as ‘events’. Instructions are provided to tell the 
computer to look out for an event. When one 
occurs, the computer automatically switches to a 
subroutine to deal with the event. 

The MSX graphics screen can display 16 
colours with a resolution of 256 by 192 pixels. Up 
to 32 eight by eight pixel sprites can be defined (or 
16 sprites of 16 by 16 dots, or eight sprites of 32 by 
32 dots). To make the most of the sprites, MSX 
BAsSIc includes a full set of dedicated commands, 
such as SPRITE to define a sprite, and PUT SPRITE to 
position one anywhere on the screen. 

As .the MSX manufacturers have claimed, 
plenty of cartridge software is already available for 
the machines. And the promise of compatibility 
appears to be true — software for the Toshiba 
HX-10 works perfectly on the Sony Hit-Bit, and 
vice versa. This applies both to cartridge software 
and cassette programs. After years of non- 
compatible systems, it seems almost magical to 
take a cartridge out of one computer and use it on 
another. The MSX companies are relying on this 
feature to make a wide range of software very 
quickly available for all the machines. 

Whether MSX will have the market impact that 
the Japanese are hoping for remains to be seen. 
With strong competition ahead from Sinclair, 
Commodore and Amstrad, among others, a sales 
struggle looms. Nevertheless, the MSX machines 
do live up to their manufacturers’ claims. They are 
well-equipped, fun-to-use computers at a 
reasonable price. 

Standard Interface 

MSX MACHINES /HARDWARE 

CHRIS STEVENS 
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Operating Under Orders | 
- With the traditional operating 
system the program currently 
running has complete charge. 
Its logic determines what 
appears on the screen, when the 
disk drive is to be accessed and 
how to interrogate the keyboard. 
Its general instructions are 
passed to the operating system, 
which manages the detailed 
driving of the particular 
hardware in use. The program's 
execution is paramount, and the 
operating system's 
subordination is taken for 
granted 

The alternative approach to integrated software is 

the last instalment of this series on 
integrated software we looked at the most 
common approach, that of producing all-in- 
one programs covering all the functions that 
you need. However, this is not the best 
system, as such programs are huge and 
wasteful of memory. Now we look at a more 
versatile method. 

DOCeeee 
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based on a completely different principle. This 
‘relies on the computer’s operating system to 
provide the basic facilities of integration, and 
individual programs written to work with that 
system will automatically fit and work together. 

Creating such an operating system has been no 
easy task, since it requires the computer’s 
hardware and software to be more sophisticated 
than in traditional designs. Apple has led the field 
with its custom-designed Lisa and Macintosh 
computers, although several other companies, 
‘notably Microsoft, are preparing systems to run on 
other popular computers such as the IBM PC. 

Programs for these new operating systems are 
very different from programs for traditional 
systems. A large part of most programs deals with 
the user interface — the routines that receive 
commands and information from the user and 
present the results. Opinions differ on how 
programs should be operated, so nearly every 
package has its own unique operating procedures 
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and needs to be learnt from scratch. 
An integrated operating system provides a 

built-in set of user interface routines for every 
application program to use. When the program 
wants to display a list of options on the screen for 
the user to choose from, there’s a ready-made 
routine to do it in the operating system. The 
advantage of this, of course, is that all the 
programs written to work with the operating 
system will have roughly the same operating 
procedures. Once you've learnt one program on 
the system, youre well on the way to using all of the 
others available! 

One particular user interface provided for these 
programs is the mouse. This is a pointing device 
used to choose options from the screen via a 
corresponding cursor. An alternative is the ‘touch-. 
screen’, in which a matrix of light beams responds 
to the touch of a finger. The display is divided into 
separate ‘windows’, each containing a different 
option or task. Technically, such a user interface 
demands a fast processor, lots of memory and very 
high-resolution graphics. But it is worth these 
extra costs because the system is generally 

_ applicable to almost any program available, it is 
very easy to learn and it provides the simplest. 
possible way for the user to be able to see and 
switch between several applications at a time. 

OPERATION CONTROL 
It is important to appreciate the way this system 
integrates programs. The program and user are 
never in direct contact — everything has to be done 
through the operating system and the operating 
system is in control the whole time. In effect, each 
application program becomes an extension of the 
operating system, and the computer is a single 
integrated ‘environment’. 3 

‘This brings us onto the second major difference 
in the way such systems function. In a traditional 
system, communication between program and 
Operating system is very much one-way. The 
program asks for a specific task to be carried out 
and the operating system subsequently does it. 

In an integrated system, the operating system is 
in control and make demands of the program. For 
example, the operating system may send a 
message to the program that says ‘Could you 
redraw your display because the user has just 
moved it to the other side of the screen’ or ‘Hold 
everything, the user has moved the mouse to a 
different application’ or ‘Here’s some data for you 
taken from a spreadsheet.’ In other words, the 
program has to be able to respond to the requests 
and demands of the operating system as well as the 
other way round. 



Once you have this degree of co-operation 
between all the software on a machine, it is easy to 
build an integrated environment. Each program 
has its own window on the screen. When the user 
puts the mouse inside the window and chooses an 
option, the operating system notifies that 
particular program and the relevant operation is 
carried out. 

For example, if the user moves to the corner of 
the window and selects the option to pick up that 
window and move it to a new position, routines in 
the operating system carry out the task and then, if 
necessary, inform the program of the changes so 
that it can amend its display appropriately. If the 
user takes the mouse to a different window, the 
original program is temporarily dormant and the 
operating system starts working with the new 
program — switching between applications is as 
simple as moving the mouse. 

Like large all-in-one programs, such systems 
suggest that all the programs and information on 
the screen at any one time are in memory and 
available for use. To facilitate this, many systems 
have massive memories — one Megabyte on the 
Apple Lisa, for example, and 512 Kbytes on the 

. Macintosh. Even then, it is usually necessary for 
the operating system occasionally to swap 
information and programs on and off disks to 
accommodate everything. To make the system 
acceptably fast, it is generally necessary for it to 
operate on a hard disk. 

In order for data to be exchanged easily 
between programs, the operating system has a 
built-in set of formats and routines for transferring 

data. When you ‘export’ some data from one 
program and ask to ‘import’ it to another, the 
operating system will suspend the first program 
and start the second, then ask the current 
application to read in and process information 
coming from another program. These pathways 
can be set up automatically so that when you 
change information in a spreadsheet, for example, 
a graph of the same spreadsheet will automatically 
change also. The two programs don’t run at the 
same time — the operating system merely juggles 
between the two of them as it needs to. 
A slightly more sophisticated concept is 

demonstrated by Apple’s Lisa, where information 
can be ‘cut’ to a clipboard window from any 
program and then ‘pasted’ into any other. 
Formatting information is carried with the data so 
that a graph produced with the business graphics 
software will be transferred as a graph into another 
program. 

This then is the most sensible way to. create 
integrated software. It enables you to mix and 
match any programs on the system, switch 
between them and move information between 
them easily. The drawback is that it requires 
sophisticated hardware that for the moment is 
quite expensive, and there is very little software 
available for you to integrate. 

However, any technological innovation of this 
scale will take time to become commonplace. The 
mouse and windows interface was, for example, 
developed by Xerox’s research teams over 10 years 
ago but it’s taken until now for such a system to 
appear in the shops! 

INTEGRATED ENVIRONMENT 
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Combined Operations 
In an integrated system the 
Operating system is enhanced 
by the addition of a manager 
module, which treats all current 
programs and data as ‘tasks’ to 
be scheduled and processed, 
and handles the underlying 
detailed operating system as 
simple system support software. 
This module moves tasks in and 
out of main memory and on and 
off disk according to user’s 
requests and current task’s 
needs. It is equipped to pass 
information to and from 
applications in standard forms, 
and so enables the transfer of 
data among the tasks. In effect 
the manager is a high-priority 
task itself, and its relationship 
with the other tasks is symbiotic 
rather than servile 
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RAISE THE ALARM 

rkshop, we ‘designed or In the last section of ' 

and built a mains relay box that allows us to 
control mains voltage devices with suitable 
software. In this instalment, we look at the 
design of some programs to use the mains 
relay box and demonstrate some simple 
domestic applications. : 

: The mains relay box is designed t to Seeanola a mains 
supply to any device that is plugged into it. In 
response to a low voltage signal, the box makes or 
breaks the mains power fed to the socket mounted 
on the box. The mode of operation is such that the 
mains supply to the socket is maintained while 
there is a low voltage current supplied to the relay. 
Therefore, we can trigger the relay directly from 
the low voltage output box we built earlier in the 
course (see page 574). The supply of mains power 
from the relay box will mirror exactly the low. 
voltage current supplied to the relay from the low | 
voltage output box. Thus, the control of mains 
supply can be achieved by the same software 
techniques used to control low voltage devices. 

If, for example, the mains relay’s low voltage 
leads are connected to the positive and negative 
connections of line 0 on the output box, and it is 
plugged into a mains socket, then a mains current 
will be supplied to the socket on the relay box 
when bit 0 of the user port data register is sent high. 
Whenever bit 0 is sent low then the mains supply 
to the relay box’s socket will stop. Up to four mains 
telay boxes can be connected to the low voltage 
output box and switched in this way. 
We can make use of this simple switching 

arrangement to develop a number of control 
systems that make use. of everyday household 
appliances. First, let’s try the following simple 
project, in which we make use of a tape recorder to 
program your micro to respond ‘verbally’ to 
pressure on a pad. 

To begin, we need to record a series of phrases, 
such as “Youre treading on my pad’, followed by 
“You've just done it again’ and “Look, I’m warning - 
you!’, and so on. Once the messages have been 
recorded, we will connect the pad and recorder to 
our user port system and write some software to 
trigger off the phrases, one at a time, in response to 
repeated pressure on the pad. 
We have to make the following connections to 

the user port system: 

1) Plug the mains relay voltage leads into the 
positive and negative terminals of line 0 on the low 
voltage output box. 
2) Plug the supply lead to the mains relay box into 
a wall socket and switch it on. 
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3) Connect the two pressure pad leads across the 
positive and negative terminals of line 7 of the 
buffer box. 

The main problem in designing the software to run 
this system is ensuring that the tape recorder is 
switched on and off with precision when a message 
is played. Before we can write a program therefore 
we must accurately time each message and enter 
this data into the controlling program. Timing can 
be done using your micro’s internal timer or a 
stopwatch. If there are three phrases on the tape 
lasting for periods of T(1), T(2) and T(3) seconds 
then we can write a program which, on activation 
from the pressure pad, turns on the tape recorder 
for the correct time period for each successive 
message. If the timing of the phrases is done 
accurately then each phrase should be ready to 
start when the tape recorder is switched on. 

The following programs (for the Commodore 
64 and the BBC Micro) will turn the tape recorder 
on for three successive time intervals — T(1), T(2) 
and T(3) — in response to triggers from the pressure 
pad. You must set these variables to your own 
timed values for the tape you record. 
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PROGRAMMABLE ALARM CLOCK 
Having developed a system sensitive to intrusive 
footsteps, let’s now consider a project to turn your 
micro into a handy programmable alarm clock. 
Such a system can, of course, be tailored to meet 
one’s exact needs. The program we give (in 
versions for the Commodore 64 and the BBC 
Micro) allows the user to enter: 

1) the time of day; 

2) the number of ‘snooze’ intervals (periods 
between the bursts of the buzzer or music) 
required; 

3) for each snooze interval, whether music, alarm 
or a silent period is required and the interval 
length; 

4) for each interval, whether a light should be 
switched on; 

5) the latest desirable rising time. 

The program works on the assumption that the 
following connections are made to the low voltage 
output box: 

1) A tape recorder is connected to line 0 through a 
mains relay. 

2) A table lamp is connected to line 1 Mnrough a 
mains relay to line 1. 

3) A nine-volt electric bell is connected directly to 
line 3. 

The program accepts the latest rising time and 
works backwards through the programmed 
intervals to calculate the start time for each 
interval. Use is made of arrays to store the data 
that tell us which appliances are to be on during 
any one period. Note that the array variables are 
given values that correspond to the bit value 
required in the data register to turn that particular 
appliance on. By making use of the logical OR 
instruction, we can simply find the composite total 
that must be placed in the data register to turn any 
combination of the devices on. 

Most of our programming effort has been 
directed towards manipulating string variables to 
allow numerical calculations to be made. This is 
particularly true of the Commodore 64 program, 
as the version of BAsic used by that machine lacks 
the useful MOD and DIV commands available to 
programmers of the BBC Micro. 
We have now developed a truly flexible input 

and output system for microcomputer control that 
allows us to control LEDs, low voltage devices and 
mains appliances, as well as allowing the micro to 
accept and interpret data input from a range of 
sensors. There are many possibilities now open to 
us to design control systems for our own use. In the 
examples given here, the micro is used as a 
sophisticated programmable timer. Other 
applications could involve turning electric fires on 
and off in response to a pair of heat sensors, or 
turning on an electric light at night. There are 
endless possibilities for experimentation. 

Commodore 64 
REM **** CBM 64 ALARM CLOCK kx** 

DOR=56579:DATREG=S6577¢ 

POKE DOR,255:POKEDATREG,@ 

PRINTCHRS(147):REM CLEAR SCREEN 

INPUT"NUMBER OF SNOOZE INTERVALS ’?N 

MEN+t1 

DIM ACM) -M<M) Lmao, TSSCM) , T CMa 

REM ***%* INPUT INTERVAL DATA **** 

FOR C#l TG N 

PRINTIPRINT" INTERVAL NUMBER"; C 

INPUT"MUSIC. ALARM OR SILENCE <M/“A/S>"7 ANS 

ANS=LEF TS CANS, 1? 

IF ANS< >" M"ANOANS< > "A"“ANDANS<S 2"°S" THEN 210 

IF ANS="M" THEN MCC) =1tmxC) <6 

IF ANS="A" THEN ACC) S82 McC) -8 

IF ANS="S" THEN ACC HO5h(Ca=8 

INPUT”LIGHT ON (Y/N "7 ALS 

LI=LEFTSCALS, 1) 

IF LSk>°¥" AND LS<>"N* THEN e269 

IF LSa"¥" THEN LCase: G0TOS18 

Lod S8 

INPUT" TIME INTERVAL (MINS) “2 T<C) 

NERT C 

INPUT"LATEST RISING TIME CHHMM) "> LIS 

LTS=LTS+ "OG": REM ADD SECONDS 

TSH(N+1IORELTSOREM LAST TIME 

REM CONVERT LATEST TIME TO MINUTES 

LMEGORVAL CLEFTS( LTS 2). +VAL CMIDS(L1S,3,2) > 

INPUT" TIME NOW <HHINM) "> TNS 

TIS=TNS+"OO"=REM START TIMER 

REM *x#x** ANALYSE AND CALCULATE **** 
REM ** CALC INTERVAL START TIMES «x 
FOR C=N TO i STEP -1 
LM=LM-TCC)IREDM START TIME IN MINS 
HR= INTCLM/60) 
MN=INTC60*%(LM/60-HR+.00000 1 >> 
HR#=STRS(HR) FREM HOURS 
MINS=STRECMND FREM MINS 
MNSSMIDS< MNS, 2 LEN CIING) > 
HR#=MIDS(HR®,2,LENCHRS) ) 
REM &* ADD LEADING ZEROS «x 
SPS="00" 
HR#=LEFTS(SP#,2-LENCHRS®) ) +HR® 
MNS=LEFTS<(SPS,2-LEN (MNS) ) +MINS 
TS$(C) =HRS+MNS+ "OO" 
NEXT C 
‘3 

REM **4k GO ¥ KH 
PRINTCHRS< 147) 
FOR Cei TO Né#l 
IF TIS®<TS*(C) THENGOSUB?T 18 1GOTOS3e 
DNSM<C) OR ACC) OR L¢CCXILREM GATREG DATA 
POKE DATREG,DON 
NEKT C 
FOKE DATREG,@ 
ENO 
ie 

REM x*ee2% DISPLAY TIMER S/R «8x8 
PRINTCHR#(145))1REM CRER UP 
PRINTLEFT®(TI®,2)) "1 "I MIDSCTI€,3,2)) 
PRINT" "JRIGHTS<TIS,2) 
RETURN 

BBC Micro 

1aa8 
1WeH 
{han 

{ude 
{ude 
luds 
{aad 

145 
{uae 

Lush 

THE HOME 

REM BEC @LARM CLOCK 
MODE? 
DORS&FES? ss DAT REG=AFESS 
CLS 
INPUT "NUMBER OF SNOOZE INTERVALS” 5 

Mahi+ 1 

DIM ACM) MEM) .L<M) , TCM) , TSCM) 
REM «#22 INPUT INTERVAL DATA =#=** 

FORC=1 TO WW 
PRINT INTERVAL NUMBER” :C 

REPEAT 
PRINT "MUSIC .GLARM OR SILENCE"; 

INPUT § (Mae So" sane 
ANS=LEFTS CANS, 1) 

UNTIL ANS="M" ORGNE= "A ORANGES" S" 

TF ANS="M" THEN Mi Coal sat Cos 
LF aivé="A" THEN Mi Co3=6 sax Coes 

IF GNES"S" THEN Mi Cosi tlo=e 

REPEAT 
INPUT"LIGHT ON CY¥“NO" s6LS 
ALE=LEFTECALS 12 

UNTIL ALS="¥" OR ALS="N" 

IF ALS="¥" THEN LéCo=2 ELSE Lc Co=e 

INPUT“ TIME INTERVAL (MINS) ":1T (C3 

HEXT C 

INPUT "LATEST RISING TIME (HHP "LT? 
TS(N+ 1 )=S@00*( 6@"UALCLEFTS*L1S, 2) 2) 
TSCN#+ 1 OSTSCN+ 1D tVRLCRIGHTS*( LIS, 22) 

5 REM CONVERT LATEST TIME [0 MINS 
LhMeeoeVAL LEFPTS(LT#, 22? 
LM=LMtVUALCRIGHTE*(LT$, 2)? 

INPUT" TIME NOW < HHP sy TNS 
TIME=6800*( 6G SURLCLEFIS (INS, 23 3 3 
TIME=TIME+VALU RIGHTS* TN®, 2) > 

REM ANALYSE AND CALCULATE 

FORCSH TO 1 STEP -1 
LM=LM-T<C):REM INTERVAL START 
TSt Ci =6800eLM 
NEST © 

REM se£22 Gh sexe 

CLS 
FUR Cet TO Met 

REPEGT 

PROCt imer 

URNITIL TIME s= Ts. to 

REGDATGShMCl) OR Alla OR Lets 

?DATREG=REGDATA 

NEST oC 

SORT REGSe8 

BH END 

DEF PROT imer 

MINS TIME DI! Se66> MOb 4k 

HR= TIME GIS! shat) MOO se 

MINPSSTRECMING sHRSB=STREOHE 

REM SOO LEADING EERUS 

See="ub" 
HRE=LEFTE( SPE, S- LEN HRS) 1 tHRS 

PINS=LEF IE: SPS, 2-LENCMINS) o tMINS 

PRINTTABCI SE. i 2 2HRE:" : " MINe 

EMDR ROG 
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Give Us A Bell 
The commonest frequency 
distribution - in nature and in 
theory - is the Gaussian or 
normal distribution, sometimes | 

known as the bell curve 

FREQUENCY 
At its simplest, the frequency of any quantity is the 
number of times it occurs during an observation 
period. The word is used most often and with a 
more specific meaning in physics and electronics, 
and in statistical analysis. In the former fields, 
frequency is understood to mean the number of 
complete cycles of vibration of some observed 
variable in unit time. It is measured in cps (cycles 
per second), but the international unit is now 
called the hertz. The British domestic electricity 
supply is an alternating current whose frequency is 
50 Hz; the musical note A above middle C has a 
frequency of 440 Hz; the Z80A microprocessor 
has a clock rate of 4.25 MHz (it performs 
4,250,000 primitive machine operations per - 
second); and the BBC’s Radio Four broadcasts at 
a frequency of 94 MHz. The frequency of 
vibration of wave phenomena such as sound and 
light is associated with two other quantities — 
wavelength (the distance between identical points 
on two consecutive cycles such as peak to peak, 
for example) and speed of propagation — in the 
simple relationship: 

Speed = Frequency X Wavelength 

Thus, since electromagnetic radiation (of which 
visible light, radio and infrared are examples) has 
an observed speed of propagation of 324,000 km 
per second, the wavelength of the Radio Four 
transmissions must be 3.44 metres. 

In statistics, frequency refers to the number of 
occurrences of some quantity in a sample or a 
population of similar quantities; so, in a sample of 
100 British males we might observe that the 
frequency of occurrence of right-handedness was 
87, meaning that 87 people in that sample said 
that they were right-handed. Statistical analysis 
depends upon observations of frequency of 
occurrence, and really derives from the 
speculations of French scientist Blaise Pascal 
(1623-62) on the expected frequency of 
occurrence of the numbers obtained by throwing 
two dice. 

FREQUENCY DISTRIBUTION 
If the results of an experiment are plotted on a 
graph with the results along the x-axis and their 
frequency of occurrence along the y-axis then the 
result gives a picture of the frequency distribution 
of those observations. In order to obtain a 
ineaningful distribution it is usually necessary to 
group the data into sub-classes, and plot the 
frequency. against the sub-classes; if the data 
group was people’s heights in metres, for example, 
then the sub-classes might be 1.60-1.65 metres, 
1.70-1.75 metres, 1.80-1.85 metres, and so on. 
These distributions can be analysed 
mathematically, and allow a great deal of 
descriptive. and predictive information to be 
inferred from what would otherwise be raw data. 
A commonly occurring frequency distribution 

is the normal or Gaussian distribution: many 
human attributes are normally distributed 
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through the population, such as height, eye colour 
and (allegedly) intelligence. Many sampling 
distributions tend to a normal distribution as the 
sample size tends to infinity. 

Normal Distribution 
STANDARD DEVIATION=10 

MEAN=100 

FREQUENCY OF OBSERVATION 

as V2 | 
90% 

DATA VALUES 95% 

Any particular sample is characterised by its 
mean (the ‘average’ value of the sample data) and 
its standard deviation (a measure of the extent to 
which the sample data differs from the mean 
value). If the distribution is normal, then 
approximately 65 per cent of the sample data will 
differ from the mean value by less than one 
standard deviation, and over 90 per cent will differ 
from it by less than two and a half standard 
deviations. The entire science of statistics is built 
on this kind of analysis of frequency distributions. 

FULL DUPLEX 
A telephone line is full duplex while a radio link is 
usually half duplex: in the first case data can travel 
in both directions simultaneously, while in the 
second case the data travels in only one direction 
at a time — hence the need to switch from transmit 
to receive. An even lower level of connection is 
simplexin which data travels in one direction only, 
with no possibility of reversing the polarity — 
broadcast radio or television, for example, is a 
simplex communication. — | 

FUZZY THEORY 
In digital systems there are no half-measures, no 
uncertainty — everything is one or zero, yes or no. 
This binary logic is necessary at electronic levels, 
but it has influenced the symbolic logic with which 
computer programs model the real world. In this, 
computer thought has departed significantly from 
those aspects of human thought and logic that are 
most valuable to us, namely our ability to deal with 
half-truths and uncertainty, the ability to make 
decisions on the basis of incomplete data. Fuzzy 
logic attempts to introduce this ability to the 
computer by constructing a multi-value logic in 
which a statement may be true, probably true, 
possibly true, probably untrue, or untrue. This 
leads to some interesting insights and has so far 
thrown up such bizarre artefacts as fuzzy sets and 
fuzzy relationships. As artificial intelligence and 
research progresses we may expect more 
developments in this fascinating field. 



INS AND OUTS 

One of the most important aspects of 
Assembly language programming is 
controlling input and output. We look at the 
operation of the two interface chips most 
commonly used with the 6809 processor — 
the 6820 PIA and 6850 ACIA — and show 
how these are programmed. 

The 6809 processor, like the 6502 but unlike the 
Z80, does not have a separate input/output 
address space and special I/O instructions. 
Instead, the I/O device interface chips sit in the 
normal address space and are handled using 
memory access instructions. ‘To the processor, 
these devices appear as memory locations exactly 
like the rest of memory. This has the advantage of » 
being simple and quick, but the disadvantage of 
taking up a block of addresses that are then 
unavailable for normal use. As a consequence, the 
6809, despite having a 16-bit address bus capable 
of addressing 64 Kbytes of memory directly, is 
restricted to about 56 Kbytes maximum without 
memory management hardware and software. 

It is possible for some input/output devices to 
be attached directly to the system data bus but 

normally there is an interface chip in between. 
These interface chips are sophisticated devices, as 
complex as the microprocessor itself, and it is 
normal to use chips belonging to the same family 
as the processor since this makes the job of 
attaching them and controlling them easier. The 
two chips most commonly used with the 6809 are 
the 6802 (or 6821) PIA (peripheral interface 
adaptor), which handles parallel I/O, and the 
6850 ACIA (asynchronous communications 
interface adaptor), which deals with serial I/O. 
Each of these has a number of registers, and 
controlling them is a matter of reading and writing 
the contents of those registers, treating them as 
though they were normal memory locations. 
There are three types of registers: 
@ Control Registers: These are write-only 
registers; values are stored in them in order to 
program the chip for the particular options that 
you require, such as setting the baud rate. 
® Status Registers: These are read-only registers, 
the values of which give an indication of the ‘status’ 
of the chip. These will show, for example, whether 
an input has been received, whether the last output 
has been transmitted, or whether an error has 
occurred. 
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6809 CODE/MACHINE CODE 

Peripheral 
Matters 
Printers require data to be 
sent to them in particular 
formats and at certain 
speeds: it would be wasteful 
to have the CPU deal with 
such relatively trivial matters, 
so the CPU sends the 
character data to the 
Peripheral Interface Adaptor, 
and it devotes itself full-time 
fo communicating with the 
printer 
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@ Data Registers: These are the registers that 
contain the data being input or output, and so they 
may be read-write or separate read and write. 

In order to conserve memory space it is common 

practice for more than one register to occupy the 

same address. For example, a status register and a 

control register may be at the same address; the 

one that appears at that address is determined by 

whether you are reading or writing to it. Similarly, 
an input data register and an output data register 
may share an address. 

The 6820 PIA contains six registers and 
occupies four consecutive bytes of memory space. 
The chip actually contains two independent ports, 
each of which uses three registers. The peripheral 
side of the chip has eight data lines and two control 
lines for each port. The two control lines would be 
connected to appropriate control lines on the 
peripheral so that they can be used to determine 
status. Control line 1 is for incoming control 
signals only, but control line 2 can be programmed 
to receive or send control signals. 

The three registers are: 
@ A data register, which can function for both 
input and output, since each bit can be 
independently set. 
@ A data direction register, each bit of which is 
used to set the corresponding bit in the data 
register as input (0) or output (1). 
@ A combined control/status register. 
The data direction register and the data register 
share the same address. The state of one of the bits 
in the control register determines which of these 
appears at this address. The table in the margin 
gives the offset from the base address of the chip 
for the addresses of each of the registers. 

The bits in the control/status register are 
assigned as follows: 

For the moment we shall not be considering the 
use of interrupts, nor shall we be concerned with 
the detailed effects of bits 1 and 4. Note that when 
writing to the register to set the control bits it is 
impossible to affect bits 6 and 7. 

The first of our example programs sets up and 
uses a 6820 chip to control a printer via a standard 
Centronics interface. The latter specifies a large 
number of control lines as well as the eight data 
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lines. We are not concerned with the detail of these 
except to note that one control line (called the 
strobe) is used to signal to the printer that a 
character is on the way. This should be connected 
to control line 2, which must be set for output. 
Another control signal (termed the acknowledge) 
is used by the printer to.indicate that it is ready for 
the next character to be sent. This should be 
‘connected to control line 1. The eight data lines 
should clearly be connected to the eight data 
outputs from the PIA port. 

To set up the port we must select the data 
direction register and program all eight bits for 
output, then select the data register, and set 
control line 2 for output. To use the chip we 
continually read the control/status register until a 
one appears in bit 7, indicating that the printer is 
ready for a character. We can then write a 
character to the data register, which automatically 
sends a control signal out on control line 2. Bit 6 
will be set to one when the character has been 
transmitted. We must then read the data register to 
clear bits 6 and 7 and repeat the process until the 
last character has been transmitted. The process of 
sending and receiving control signals between the 
processor and the peripheral is known as 
handshaking. | 
We shall assume that the base address of the 

PIA is given in a table of addresses located at 
$3000. On entry to the printing subroutine, 
processor register A contains the index into this 
table, and Y contains the address of the string to be 
printed. The string is stored in the normal format; 
that is, length byte first. There are two subroutines, 
one to set up the port and one to print the string. 

6850 ACIA 
The 6850 ACIA is a UART (universal 
asynchronous receiver/transmitter) that is used 
for serial communication, normally using the 
RS232 protocol and possibly a modem. It has four 
registers and occupies two addresses. There are 
five connections to the chip on the peripheral side: 
one line is for transmitted data, one is for received 
data, and three control lines are for handshaking, if 
this is required. Two of these are for incoming 
control signals — DCD (Data Carrier Detect) and 

_ CTS (Clear To Send) — and one is for outgoing 
sionals — RTS (Request To Send). The uses of 
these lines should be fairly obvious from their 
names, and they may be connected to the similarly 
named lines on a standard RS232. 

The four ACIA registers are given in the 
margin. In the control register, the most significant 
bit (bit 7) is used to enable interrupts for receiving 
data. Bits 5 and 6 are used to enable or disable 
transmission interrupts and to determine the 
nature of the control signal sent out on the RTS 
line. Bits 2, 3 and 4 are used to determine the size 
of the ‘package’ that is actually transmitted. When 
a byte is transmitted over a serial link there are 
usually at least 10 bits sent, beginning with a start 
bit, which is detected by the receiver so that it 
knows that data is following. The actual data itself 
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can be seven or eight bits, and there may bea parity 

bit appended to that data. A parity bit is an extra 

bit that helps detect transmission errors. Finally, 

there may be one or two stop bits. The various 
options available are as follows: 

The two least significant bits (0 and 1) are used to 
determine the speed of transmission and 
reception. This is done by setting a divisor for the 
clock rate. The 6850 does not have its own clock, 
and therefore must be provided with an external 
one, typically set at 1,760 Hz. 

The combination not shown in the table, when 

both these bits are one, causes a master reset of the 

chip. 
In the status register the bits have the following 

functions: wal! 

Our second example program uses a 6850 chip to 
receive a character string, terminated by a carriage 
return, from a remote terminal. The principle is to 
program the chip appropriately, then loop round 
checking if the receive data register is full. When it 
is, we remove the data byte, which resets bit 0 in 
the status register. The process is repeated until the 
character received is a carriage return (ASCII 
code 13). We shall be ignoring any transmission 
errors, though checking for them by masking the 
contents of the status register to see if any of the 
error indicating bits are set is quite 
straightforward. We shall assume a fairly common 
protocol: eight data bits, no parity and two stop 
bits and a divide by 16 clock speed. The first 
subroutine programs the chip, the second receives 
the data. 
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Here, courtesy of Zilog Inc., we produce another part of the Z80 programmers’ reference card. | 

OT yelsuedelbiacloi- avalestes(:igie ofere O40) @fessieres (©) feist el 

General-Purpose Arithmetic IW bierelalchetcreles @)a10) (@re)eisve)| 

60808 VODE 

RESTART TO LOCATION 0038, 

INDIRECT CALL USING HEGISTER 
1 AND 8 BITS FROM INTERRUPTING 
DEVICE AS A POINTER. 

Symbolic Flags 18 J ofexeral=) No.of No.of M No.of T 
Mnemonic Operation os £ H PIV N C- 76 543 210 Hex Bytes Cycles States Comments 

DAA Cleoevicec 2ee Ceaice || — - = = 00 100 111 2/7 1 1 4 Biro late) cielo si 

into packed BCD accumulator. 

following add or 

Subtract with 

packed 

P BOB ees clacs. 
eat AA —lrrr—et—‘NRNNCCONWOUCOiCOU'‘OCONONCN.C. i aise 1 4 Complement 

accumulator 

fone s 

(oe)gaie)cigaici aie) 

Nie 8 a = =. (oo hCUmr CC 2 8 INicleiic: cee Gwe) 
: O01 000 100) 44 complement). 

CCF So —  ..r—O—“‘“ONNNRC((CC CC ci wise ssi a 1 4 Complement carry 
flag. 

SUF CY — 1 — . .  .. i: =. 1 4 Set carry flag. 
; NOP No operation * © ®F © . * © * (OOO 00 | | 4 

HALT CPU halted — .- - . 5 . . . = 76 1 1 4 

DI * ies . © — . . . . . . . 71 110 O01 Po | | 4 

El * ipe- - .....aaz=SC S—sSs—Ss—SOsa_SNCC SCLC 1 4 
IM 0 Set interrupt — . | . . . . . | ee 8 2 8 

| geo 8 O1 000 110 46 

IM 1 Set interrupt - . - .. . . . =| .. EO 2 i 
mode | O1 O10 110 56 

IM 2 set interrupt — . . . . ...  ©8§§ = 2 2 8 
mode 2 Oi 011 20 DE 

NOTES [FF indicates the interrupt enable fiip-flop 

_CY indicates the carry flip-flop. 

* indicates interrupts are nol sampied at the end of El or DI 

Flag Notation: « = flag not affected, O = flag reset, | = flag set, X = flag iS unknown, 

t = flag is affected according to the result of the operation. 




